If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1-9/(x^2)=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
1*x^2-9=0
We add all the numbers together, and all the variables
x^2-9=0
a = 1; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·1·(-9)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*1}=\frac{-6}{2} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*1}=\frac{6}{2} =3 $
| b3=-7 | | m-6.2=9.5 | | w+4.2=6.9 | | (6-1)+(5+3)i=5+8i | | 4(-3x+1)+12=4x-3 | | 3(x+4)+5=2(x+5 | | 24-3g=12 | | -13.9=x/8-1.1 | | -6.73=-2.53+2z | | -10-u=14 | | m/3-2=2.26 | | 2.88(0.25-x)=x | | 2(x+4)=35 | | 2c-1.43=4.93 | | 11b+67+4b+74=180 | | -16(x-1)=4(x-5) | | 4x-(3-x)=7(x-3)+10= | | 8x−8=16 | | w/2+9=13.1 | | -16(x-1)=4(x-5 | | 2x-16=8x+5 | | O.15(80)=x | | (2-d÷3)+(3d-1÷2)=(2+d÷4) | | x/3+12=3 | | 32+52=x+18 | | x+55=2x+42 | | x+55+2x+42=180 | | 7x+26=4x+43 | | 4(x+3)+2((x+4)-7=7(x+8)+5(x+3)+2 | | f=475(0.5)^3 | | 7t-(t-5)=6t=5 | | 8x-26=5x-10 |